STUDENT NUMBER:

\qquad

The Irving K. Barber School of Arts and Sciences

Physics 231— Winter 2013/2014 - Term 1
FINAL EXAMINATION

Instructor: Jake Bobowski
Saturday, December 5, 2013 Time: 18:00-21:00
Location: ART 386

This Examination was prepared by Jake Bobowski
Not including this coversheet, the exam consists of 15 numbered pages.

- Attempt all of problems 1 through 4.
- Attempt any three of problems 5 through 8 .

If necessary, you may use the backs of pages for calculations.
You must clearly show your work to receive full credit.
Writing down only the correct final answer will not earn full credit.
Include units with the final answer whenever appropriate.

1	2	3	4	5	6	7	8	total
10	10	15	10	10	10	10	10	75

\qquad
Free Response: Write out complete answers to the following questions. Show your work.
($\left.10^{\text {pts }}\right)$ 1. You have three resistors with specified resistances and uncertainties: $R_{1} \pm \delta R_{1}, R_{2} \pm \delta R_{2}$, and $R_{3} \pm \delta R_{3}$.
(a) If the three resistors are connected in series, what is the equivalent resistance $R_{\mathrm{s}} \pm \delta R_{\mathrm{s}}$? Find expressions for R_{s} and δR_{s} in terms of R_{1}, R_{2}, R_{3} and their uncertainties.
(b) If the three resistors are connected in parallel, what is the equivalent resistance $R_{\mathrm{p}} \pm \delta R_{\mathrm{p}}$? Find expressions for R_{p} and δR_{p} in terms of R_{1}, R_{2}, R_{3} and their uncertainties.
(c) Suppose you want to make a 300Ω resistor. Given the limited equipment that you have in the lab, your options are to combine three $100 \Omega \pm 5 \%$ resistors in series or to combine three $900 \Omega \pm 5 \%$ resistors in parallel. Compare the resulting numerical values of δR_{s} and δR_{p}.
(10 $\left.0^{\text {pts }}\right)$ 2. Consider the following two circuits:

(a) For circuit (i), find and expression for $v_{\text {out }, \mathrm{i}}$ in terms of $v_{1}, v_{2}, R_{1}, R_{2}$, and R.
(b) For circuit (ii), find and expression for $v_{\text {out,ii }}$ in terms of $v_{1}, v_{2}, R_{1}, R_{2}$, and R.
(c) Finally, in your expressions for $v_{\text {out, }, \mathrm{i}}$ and $v_{\text {out, ii }}$ from parts (a) and (b) set $R_{1}=R$ and $R_{2}=R$. Simplify your answers as much as possible and write down the resulting $v_{\text {out }, \mathrm{i}}$ and $v_{\text {out, ii }}$ expressions.
($\left.15^{\text {pts }}\right)$ 3. Consider the $L R$-series circuit shown below:

(a) If the input voltage is given by $v_{\text {in }}=V_{0} \sin \omega t$, what are the amplitude I_{0} and phase ϕ of the current i ?
(b) For circuit (i) on the previous page, find an expression for $\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|$ in terms of ω, R, and L. Sketch $\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|$ as a function of ω. What kind of filter is this circuit?
(c) If an oscilloscope is connected across the inductor, the input resistance R_{L} of the oscilloscope is placed in parallel with the inductor as shown below in circuit (ii):

For this modified circuit, what is the new expression for $\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|$? It is not necessary to do complicated calculations to find the appropriate expression. Instead, try coming up with an equivalent replacement that turns this back into a series circuit similar to the one shown in figure (i).
$\left(10^{\text {pts }}\right)$ 4. Recall the half-adder circuit used to add to single-bit binary numbers which has two inputs A and B and two outputs S and C :

(a) Write down the truth table for the half-adder circuit.
(b) Fill in the missing data on the truth table given on the next page. What kind of operation is this circuit performing on the pair of 2-bit binary inputs $\left(A_{1}, A_{0}\right)$ and $\left(B_{1}, B_{0}\right)$?

A_{1}	A_{0}	B_{1}	B_{0}	A_{x}	B_{x}	S_{x}	C_{x}	A_{y}	B_{y}	S_{y}	C_{y}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
0	0	0	0												
0	0	0	1												
0	0	1	1												
1	0	0	0												
0	1	0	1												
1	0	1	0												
1	1	1	0												
1	1	1	1												

Complete any of the three remaining problems (5, 6, 7, 8).
Clearly indicate which three problems you which to be graded by entering three numbers into the table below.

$\left(10^{\text {pts }}\right)$ 5. Use Euler's equation $\left(e^{ \pm j \phi}=\cos \phi \pm j \sin \phi\right)$ to derive the following two trigonometric identities:

$$
\begin{aligned}
\cos ^{2} \phi & =\frac{1+\cos 2 \phi}{2} \\
\sin ^{2} \phi & =\frac{1-\cos 2 \phi}{2}
\end{aligned}
$$

($\left.10^{\text {pts }}\right)$ 6. In class we only talked about logic gates with two inputs, however, it is possible to make some logic gates with any number of inputs. A 3 -input gate AND and a 3 -input NOR gate are shown below:

The truth for the 3-input AND gate is:

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(a) Write down the truth table for the 3 -input NOR gate.
(b) Design a 3-input NOR gate using only transistors and resistors. Hint: One common design uses three transistors.
(10 $\left.0^{\text {pts }}\right)$ 7. Consider the digital circuit shown below:

(a) Write down the logic expression for the output Q. (For example, recall that the logic expression for the X AND Y operation is $X \cdot Y$.)
(b) Simplify the expression for Q obtained in part (a) as much as possible. For part of your solution, you may find De Morgan's theorems helpful: $\overline{A \cdot B}=\bar{A}+\bar{B}$ and $\overline{A+B}=\bar{A} \cdot \bar{B}$. Draw the simplified digital circuit. Are any of the inputs irrelevant to the state of the output Q ?
($\left.10^{\text {pts }}\right)$ 8. Consider the so-called "log amplifier" shown below:

Recall that the current in a diode is given by $I_{\mathrm{D}}=I_{0}\left(e^{e V_{\mathrm{D}} / k_{\mathrm{B}} T}-1\right)$ where I_{0} is a constant and V_{D} is the voltage across the diode. Assuming that v_{in} and R are chosen such that $I_{\mathrm{D}} \gg I_{0}$, show that:

$$
v_{\mathrm{out}}=G \ln \left(\frac{v_{\mathrm{in}}}{R I_{0}}\right)
$$

Find an expression for the proportionality constant G.

