NAME: _

(Print) Last Name,

First Name

STUDENT NUMBER: ______

The Irving K. Barber School of Arts and Sciences

Physics 231— Winter 2013/2014 – Term 1 FINAL EXAMINATION

Instructor: Jake Bobowski

Saturday, December 5, 2013 Time: 18:00 - 21:00 Location: ART 386

This Examination was prepared by Jake Bobowski Not including this coversheet, the exam consists of 15 numbered pages.

- Attempt all of problems 1 through 4.
- Attempt any three of problems 5 through 8.

If necessary, you may use the backs of pages for calculations. <u>You must clearly show your work to receive full credit.</u> <u>Writing down only the correct final answer will not earn full credit.</u> Include units with the final answer whenever appropriate.

1	2	3	4	5	6	7	8	total
10	10	15	10	10	10	10	10	75

PHYSICS 231	
2013/14 Term	1

Final Examination

<u>Name:</u> Student Number:_____

Free Response: Write out complete answers to the following questions. Show your work.

(10^{pts}) **1.** You have three resistors with specified resistances and uncertainties: $R_1 \pm \delta R_1$, $R_2 \pm \delta R_2$, and $R_3 \pm \delta R_3$.

(a) If the three resistors are connected in series, what is the equivalent resistance $R_s \pm \delta R_s$? Find expressions for R_s and δR_s in terms of R_1 , R_2 , R_3 and their uncertainties.

(b) If the three resistors are connected in parallel, what is the equivalent resistance $R_{\rm p} \pm \delta R_{\rm p}$? Find expressions for $R_{\rm p}$ and $\delta R_{\rm p}$ in terms of R_1 , R_2 , R_3 and their uncertainties. (c) Suppose you want to make a 300 Ω resistor. Given the limited equipment that you have in the lab, your options are to combine three 100 $\Omega \pm 5\%$ resistors in series or to combine three 900 $\Omega \pm 5\%$ resistors in parallel. Compare the resulting numerical values of $\delta R_{\rm s}$ and $\delta R_{\rm p}$.

(10^{pts}) **2.** Consider the following two circuits:

(a) For circuit (i), find and expression for $v_{\text{out,i}}$ in terms of v_1 , v_2 , R_1 , R_2 , and R.

(b) For circuit (ii), find and expression for $v_{\text{out,ii}}$ in terms of v_1 , v_2 , R_1 , R_2 , and R.

(c) Finally, in your expressions for $v_{\text{out,i}}$ and $v_{\text{out,ii}}$ from parts (a) and (b) set $R_1 = R$ and $R_2 = R$. Simplify your answers as much as possible and write down the resulting $v_{\text{out,i}}$ and $v_{\text{out,ii}}$ expressions.

 (15^{pts}) **3.** Consider the *LR*-series circuit shown below:

(a) If the input voltage is given by $v_{in} = V_0 \sin \omega t$, what are the amplitude I_0 and phase ϕ of the current *i*?

(b) For circuit (i) on the previous page, find an expression for $\left|\frac{v_{\text{out}}}{v_{\text{in}}}\right|$ in terms of ω , R, and L. Sketch $\left|\frac{v_{\text{out}}}{v_{\text{in}}}\right|$ as a function of ω . What kind of filter is this circuit? (c) If an oscilloscope is connected across the inductor, the input resistance $R_{\rm L}$ of the oscilloscope is placed in parallel with the inductor as shown below in circuit (ii):

For this modified circuit, what is the new expression for $\left|\frac{v_{\text{out}}}{v_{\text{in}}}\right|$? It is not necessary to do complicated calculations to find the appropriate expression. Instead, try coming up with an equivalent replacement that turns this back into a series circuit similar to the one shown in figure (i).

(10^{pts}) **4.** Recall the half-adder circuit used to add to single-bit binary numbers which has two inputs A and B and two outputs S and C:

(a) Write down the truth table for the half-adder circuit.

(b) Fill in the missing data on the truth table given on the next page. What kind of operation is this circuit performing on the pair of 2-bit binary inputs (A_1, A_0) and (B_1, B_0) ?

A_1	A_0	B_1	B_0	A_x	B_x	S_x	C_x	A_y	B_y	S_y	C_y	Q_3	Q_2	Q_1	Q_0
0	0	0	0												
0	0	0	1												
0	0	1	1												
1	0	0	0												
0	1	0	1												
1	0	1	0												
1	1	1	0												
1	1	1	1												

Complete any of the **three** remaining problems (5, 6, 7, 8).

Clearly indicate which three problems you which to be graded by entering three numbers into the table below.

(10^{pts}) **5.** Use Euler's equation $(e^{\pm j\phi} = \cos \phi \pm j \sin \phi)$ to derive the following two trigonometric identities:

$$\cos^2 \phi = \frac{1 + \cos 2\phi}{2}$$
$$\sin^2 \phi = \frac{1 - \cos 2\phi}{2}$$

(10^{pts}) 6. In class we only talked about logic gates with two inputs, however, it is possible to make some logic gates with any number of inputs. A 3-input gate AND and a 3-input NOR gate are shown below:

The truth for the 3-input AND gate is:

A	В	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

(a) Write down the truth table for the 3-input NOR gate.

(b) Design a 3-input NOR gate using only transistors and resistors. $\mathit{Hint:}$ One common design uses three transistors.

(10^{pts}) **7.** Consider the digital circuit shown below:

(a) Write down the logic expression for the output Q. (For example, recall that the logic expression for the X AND Y operation is $X \cdot Y$.)

(b) Simplify the expression for Q obtained in part (a) as much as possible. For part of your solution, you may find De Morgan's theorems helpful: $\overline{A \cdot B} = \overline{A} + \overline{B}$ and $\overline{A + B} = \overline{A} \cdot \overline{B}$. Draw the simplified digital circuit. Are any of the inputs irrelevant to the state of the output Q?

(10^{pts}) 8. Consider the so-called "log amplifier" shown below:

Recall that the current in a diode is given by $I_{\rm D} = I_0 \left(e^{eV_{\rm D}/k_{\rm B}T} - 1 \right)$ where I_0 is a constant and $V_{\rm D}$ is the voltage across the diode. Assuming that $v_{\rm in}$ and R are chosen such that $I_{\rm D} \gg I_0$, show that:

$$v_{\rm out} = G \ln \left(\frac{v_{\rm in}}{RI_0} \right)$$

Find an expression for the proportionality constant G.